

Some optical concepts for FLARE

Kjetil Dohlen, Sébastien Vives, Sandrine Pascal

Telescope

- Main characteristics:
 - Primary 2m-class
 - TMA configuration
 - Well-known and flexible design
- 0.4°x0.8°, off-axis FOV
- Total length: ~2250mm
 - Length minized thanks to the folding between M1 and M2

IFS main characteristics

- Slit resolution: 0.4 arcsec
- Total FoV: 150 x 24 arcsec ~1 arcmin²

- Need for a Fore-Optics spliting the telescope FoV to feed each IFU
 - F/9 to F/125 with slices of $500\mu m$ width
 - Typical slice width ranging between 250 μm and 1 mm.
 - A stack of 60 slices with 0.5 mm width already qualified !
- Spectrograph:
 - Not designed yet
 - F/10 for Nyquist sampling
 - F/5 for 1 slice/px
 - It will incorporate a dichroic to separate the spectral range in two bands.

Trade-Off for the IFU

Number of slices/mirrors versus their dimensions and shape !

The truth

between l

- « Optimistic case » IFU
 - FoV: 24x25 arcsec²/slicer
 - 6 channels (60 slices each)
 - ~360 slices in total
 - Slice: 0.5 x 31mm
 - Stack of 30x31 mm

- MUSE-like IFU
 - 40 slices/slicer
 - Slice: 0.55 x 12 mm
 - Stack of 22x12 mm
 - FoV: 15x10 arcsec²/slicer
 - 25 channels
 - ~1000 slices in total
- *MUSE/VLT as reminder:*
 - 24 channels: 1 arcmin²
 - Slice : 33mm x 0.9 mm
 - 48 slices each : 2.5 x 60 arcsec
 - > 1000 slices in total!
 - Each slice: 0.2 x 15 arcsec

High performance Low-cost IFU

In 2006, LAM and Winlight proposed an innovative approach to make slicer mirrors

Vives, S.; Prieto, E., Salaun, Y., Godefroy, P.,

"New technological developments in Integral Field Spectroscopy", Proc. SPIE 7018, 70182N

First Demonstrator (2006)...

PERFORMANCE

Generic optical specification for these components using our approach:

... applied on MUSE (2014) !

Few optical designs we have proposed for ground based instruments

VLT/MUSE: Optimize manufacturing process

ELT/EAGLE: Minimize amount of optics

Conclusions

- Although preliminary, the current design allows to demonstrate the technical feasibility of the FLARE
 - Technology is mature
 - No show stopper identified
- Towards the proposal:
 - Iterate on the specifications
 - Perform some trade-off analyses (e.g. the IFU)
 - Move to a complete optical design

